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Abstract 

 
We present examples based on actual and synthetic datasets to illustrate how 

simulation methods can mask identification problems in the estimation of discrete 

choice models such as mixed logit. Simulation methods approximate an integral 

(without a closed form) by taking draws from the underlying distribution of the 

random variable of integration. Our examples reveal how a low number of draws 

can generate estimates that appear identified, but in fact, are either not 

theoretically identified by the model or not empirically identified by the data. For 

the particular case of maximum simulated likelihood estimation, we investigate 

the underlying source of the problem by focusing on the shape of the simulated 

log-likelihood function under different conditions. 
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1   Introduction 

Over the past decade, simulation methods have grown in popularity as 

advancements in computational speed have allowed researchers to estimate increasingly 

richer models of consumer and firm behavior. In particular, the literature on consumer 

choice theory has spread rapidly with the development of numerical techniques such as 
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We present examples of mixed logit models where employing a “low” number of 

draws to construct the simulated integral can generate estimates that are not identified by 

the model or the data. In each of the examples, we estimate the model under different 

types of simulation draws: random, Halton, and shuffled Halton. We consider two types 

of identification problems: theoretical and empirical unidentification. Theoretical 

unidentification occurs when the model cannot be estimated in principle (regardless of 

the data at hand). Empirical unidentification occurs when the data cannot support the 

model even though the model may be estimable in principle. 

The first example utilizes a dataset on consumers’ choices of telephone plans. It 

demonstrates how a model that is not theoretically identified can appear to result in 

identified estimates at a low number of draws. A classic symptom of unidentification, a 

singular Hessian, does not emerge until a much higher number of draws is employed. In 

the second set of examples, we generate synthetic datasets to investigate the source of 

empirical unidentification by examining the shape of the simulated log-likelihood 

functions under varying numbers of draws and identification conditions. The last two 

examples use an actual dataset on consumer choices across retail stores and a synthetic 

dataset to consider empirical unidentification under more complex specifications. 

Limited research exists on the empirical identification of discrete choice models 
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models and support their findings with empirical examples. In contrast, this paper focuses 

primarily on the issue of empi
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 A consumer chooses the alternative that gives her the highest utility. More 

specifically, the set of values Ani of the idiosyncratic error εni that induces consumer n to 

choose alternative i is given by: 

     
n

ni ni ni ni n ni nj nj n njj 1,...,J
A { :U ( X , , ) max U ( X , , )}
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2.2   Maximum Simulated Likelihood Estimation 

To estimate the mixed logit model under maximum simulated likelihood, we 

construct the log-likelihood by calculating each individual’s probability Pni
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2.3   Methods of Generating Draws for Simulation 

We focus on three common procedures for generating draws from a density. The 

most straightforward approach obtains draws through a pseudo-random number generator 

available in most statistical software. 

An alternative approach creates draws based on a deterministic Halton sequence 

(Halton, 1960). Train (1999, 2003) provide an explanation and an example of the 

construction of a Halton sequence. In general, a Halton sequence can be created from any 

prime number p. The unit interval [0,1] is divided into p equally-sized segments, and the 

endpoints or “breaks” of these segments form the first p numbers in the Halton sequence. 

Successive numbers in sequence are generated by further subdividing each segment into 

p equally-sized segments and adding the breaks in a particular order.  

The resulting Halton draws achieve greater precision and coverage for a given 

number of draws than random draws, since successive Halton draws are negatively 

correlated and therefore tend to be “self-correcting” (Train, 2003). In fact, Bhat (2001) 

demonstrates that for a mixed logit model, 100 Halton draws provided results that were 

more accurate than 1000 random draws.  

Since each Halton sequence is constructed from a prime number, each dimension 

of simulation corresponds to a different
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Xni is a (1x5) vector consisting of four alternative-specific constants and the log of the 

cost of the service, and α is the (5x1) vector of associated taste parameters. The variable 

NESTi is a (1x2) vector of dummies for each nest. The parameter βn is a (2x1) vector 

consisting of β1n distributed N(0, σ1
2) and β2n distributed N(0, σ2

2) where β1n and β2n are 

independent. More detail on the dataset and model can be found in Train, McFadden, and 

Ben-Akiva (1987) and Walker (2001). 

Walker (2001) discusses conditions for identification of the model and shows that 

only the value (σ1
2 + σ2

2) is identified. That is, when exactly two nests exist, only one 

nesting parameter is identified and to estimate the model an identifying constraint must 

be imposed, e.g., σ1 = σ2, σ1 = 0, or σ2 = 0. 

Table 1 shows the estimation results1 for a specification that does not include the 

necessary identifying constraint. Even without a necessary identifying restriction, the 

estimation procedure generates estimates that appear identified under a low number of 

draws (1000 Halton, 5000 pseudo-random). A large number of simulation draws (in this 

case, 2000 Halton draws) are necessary before resulting in a singular Hessian.  

Not realizing the identification condition can lead to incorrect conclusions drawn 

from hypothesis tests based on standard errors. Since the parameter estimates and 

standard errors are poorly approximated under a low number of draws, they are a 

function of the specific draws and the starting values that are used. For example, the 2000 

pseudo-random draw results for the telephone dataset would lead the modeler to 

incorrectly conclude that there is no correlation within the first nest (measured), but there 

                                                 
1 All estimation results in this paper were estimated using either (1) BIOGEME using the DONLP2 
optimization routine (see Bierlaire, Bolduc and  Godbout, 2004, and http://roso.epfl.ch/biogeme) or (2) a 
MATLAB implementation of Kenneth Train's GAUSS code using a BHHH-algorithm (Berndt, et al., 1974) 
to compute the Hessian (for further information, see Chiou, 2005). Both estimation programs were shown 
to produce similar results. 
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is correlation within the second nest (flat). However, the estimation results under 5000 

pseudo-random draws lead to the opposite conclusion (correlation among the measured 

alternatives but not among the flat alternatives).  

 

4   Empirical Unidentification and the Log-Likelihood 

     Function 

 In this section, we use extremely simple, synthetic datasets to examine the source 

of the empirical unidentification by investigating the properties of the simulated log-

likelihood function as the number of draws increase. We show that regardless of whether 

the model is empirically identified, the simulated log-likelihood for mixed logit is always 

globally concave under only one draw because the model is analogous to a standard logit. 

When a model is not empirically identified, the simulated log-likelihood function begins 

to flatten and exhibit a singular Hessian only as the number of draws increases. The 

obfuscation of the identification problem occurs in the intermediate cases where the log-

likelihood still exhibits the concavity as when only one draw is used. For the discussion, 

we consider two examples of the most common ways in which mixed logit is applied: 

first error components with a nesting formulation and then random coefficients on 

continuous explanatory variables.  

 

4.1   Random Coefficient on a Nest Dummy 

We consider a simplified case where only one parameter is estimated. The 

discrete choice model consists of five alternatives that are divided into two nests, and the 
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first three alternatives comprise Nest 1. Consumer n’s utility of choosing alternative i is 

given by: 

ninini NESTU εβ += 1                                                         (9) 

where NEST1 is a dummy for whether alternative i lies in Nest 1. We specify the random 

coefficient nβ  with a normal distribution, N(0, σ2); thus only one parameter σ must be 

estimated. Strictly speaking, the resulting standard deviation is calculated as 2σ , and 

therefore the sign of the estimated coefficient σ is irrelevant. As the number of draws 

approaches infinity, the simulated log-likelihood will be symmetric about zero.  

We generate the synthetic data according to the true value σ = 2.0 by creating 

observations for N consumers. For each consumer, we calculate the utility of each 

alternative by taking a single draw of nβ
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the number of draws R is equal to one, then the simulated probability of consumer n 

choosing alternative i is:  

         
n

ni n
ni J

nj n
j 1

exp( X )P̂
exp( X )

β

β
=

=

∑
                                                   (10) 

In the estimation procedure, the random coefficient for a single draw is decomposed as 

nn υσββ +=  where nυ , n=1,...,N, are independent draws from a standard normal 

distribution. The coefficients to be estimated are β  and σ , which are the population 

mean and standard deviation for the random taste. Substituting this expression into (10), 

we obtain: 

       
n n n

ni n ni ni n ni ni
ni J J J

nj n nj nj n nj nj
j 1 j 1 j 1

exp( X ( )) exp( X X ) exp( X W )P̂
exp( X ( )) exp( X X ) exp( X W )

β συ β υ σ β σ

β συ β υ σ β σ
= = =

+ + +
= = =

+ + +∑ ∑ ∑
.         (11) 

where ni ni nW X υ=  is defined as a “new” variable created from Xni and the particular draw 

for the consumer n. This is the standard logit formula where fixed parameters β  and 

σ are estimated over the variables Xni and Wni. Since the standard logit model is globally 

concave (Train, 2003), estimation will always return a non-singular Hessian.  

In our example, a draw υn is taken from a N(0,1) distribution, and βn is calculated 

as βn = συn. The “new” variable is υn*NEST1i. In other words, we can reinterpret the 

utility function as: 

ni i n niU ( NEST1 * )σ υ ε= +                                               (12) 

where σ is a fixed coefficient on the variable υn*NEST1i. Not surprisingly, the local 

maximum when 1 draw is used occurs near the origin, since the purely random draw has 

no explanatory power.  
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 On the other hand, the singularity of the Hessian is evident under 1000 random 

draws. In Figure 1, the simulated log-likelihood function rises away from 0, reflecting 

that the true value of σ is not zero, but the log-likelihood function flattens at higher 

magnitudes of σ. The data cannot empirically distinguish among the higher magnitudes of 

σ. In the intermediate case of 10 random draws, the simulated log-likelihood still exhibits 

a single peak as in the case of 1 draw. The local concavity gives rise to a convergence of 

the maximization routine.  

Due to the efficiency of Halton draws relative to random draws, the Halton draws 

achieve the same unidentification properties at a lower threshold. In Table 2, the 

singularity of the Hessian occurs at 35 Halton draws whereas 35 random draws still 

generate a local maximum. Moreover, the large standard error of 101.142 under 10 

Halton draws suggest the presence of an identification problem.  

Table 3 reports the estimates of the standard deviation σ when the dataset contains 

N = 10000 observations. In contrast to the previous case of only 50 observations, the 

dataset of 10000 observations is sufficient to empirically identify the model. The 

parameter estimates stabilize and approach the true value of σ = 2.0 as the number of 

draws increases.  Figures 3 and 4 graph the simulated log-likelihood as a function of the 

parameter σ for a varying number of random and Halton draws, indicating a unique 

maximum (disregarding the sign) even for large number of draws. 

 

4.2   Random Coefficients on Continuous Variables 

The dataset generated for this example uses three alternatives ( i 1,2,3= ) and two 

explanatory variables (X1 and X2). Unlike the previous example with a nest dummy, the 
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parameter estimates for 1000 and 2000 draws; these estimates are also close to the true 

values used to generate the synthetic data.  

 

4.3   Discussion of Simulated Log-likelihood Analysis 

The simulated log-likelihood functions for mixed logit models are not as well-

behaved as a standard logit model; mixed logit likelihood functions are not globally 

concave and are sensitive to poor approximations of the simulated probabilities for low 

number of draws. The results from these simple examples show that for a small number 

of draws, an empirically unidentified model can appear identified. It is only after a 

sufficient number of draws is used that the shape of the log-likelihood reveals the 

singularity of the Hessian.  

 

5   Examples of Empirical Unidentification 

The simple examples from the previous section were used to explore the source of 

empirical unidentification and to demonstrate the behavior of the log-likelihood function 

under different numbers of draws and under different conditions of identification. This 

section considers estimation results for more realistic datasets, including one real dataset 

regarding households' purchases of DVDs and one synthetic dataset.    

 

5.1 Retail Stores 

 In the first example, we apply data from Chiou (2005) to examine a household’s 

choice of retail store to purchase a DVD. We estimate a consumer’s choice of store 
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conditional on the purchase of a DVD. The consumer’s choice set consists of retail stores 

from the top 15 chains that sell DVDs, and each retail store is classified under one of five 

store types: mass merchant, video specialty, electronics, music, and online. Consumer n’s 

utility from traveling to store i to purchase her chosen video is given by: 

5

ni ni ik nk ni
k 1

U X TYPE *α β ε
=
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Table 6 presents the results under 1, 100, 200, and 1000 draws with pseudo-

random, Halton, and shuffled Halton draws.4 Although the model specification is 

theoretically identified, the results with high numbers of draws indicate that the 

parameters are not empirically identified by the data. Nonetheless, optimizations from 

200 random or 100 Halton draws converge and generate estimates that appear identified. 

Without checking the robustness of the estimates to varying number of draws, the 

unidentification issue would not be apparent. For instance, under 200 random draws, the 

mean and standard deviation of the population distribution of tastes over video specialists 

are 19.391 (6.381) and 1.501 (0.446), and the coefficients are significant at the 1% level. 

Similarly, under 100 Halton draws, the mean and standard deviation of the random 

coefficient on video specialists are 19.576 (8.817) and 1.244 (0.507).  

The identification issue becomes readily apparent under 100 shuffled Halton 

draws; the optimization routine does not converge as parameter estimates explode. The 

results suggest that shuffled Halton draws expose the identification issue at a lower 

number of draws relative to other types of draws.  

 

5.2 Synthetic Data 

The above retail and synthetic datasets consist of relatively simple specifications. 

In this section, we present an example to illustrate how simulation difficulties become 

more apparent as additional complexities are introduced into the model. The example 

uses a dataset that consists of 2000 
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 With advancements in computational speed, simulation techniques have vastly 

improved the ability to estimate complex models to answer a myriad of questions. 

However, the implementation of simulation can often mask problems of identification. A 

low number of draws can result in estimates that appear identified, but in fact are not 

identified either theoretically by the model or empirically by the data. 

To highlight the issue, we present examples of maximum simulated likelihood 

estimation of mixed logit models under actual and synthetic datasets. Although each of 
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In addition to the empirical results, the underlying source of these issues was 

investigated by examining the shape of the log-likelihood function under varying 

numbers of draws and different identifyi
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Table 1. The Demand for Telephone Service 

         
Draws:   2000 Random 5000 Random 1000 Halton 2000 Halton 
             

Parameter estimate 
std. 
error estimate 

std. 
error estimate 

std. 
error estimate 

std. 
error 

Alternative Specific constants -3.81 (0.66) -3.81 (0.66) -3.80 (0.67)   
   Budget Measured (1) -3.01 (0.61) -3.01 (0.61) -3.01 (0.61) singular 
   Standard Measured (2) -1.09 (0.30) -1.09 (0.30) -1.09 (0.30)   
   Local Flat (3) -1.19 (0.85) -1.19 (0.85) -1.19 (0.85)   
   Extended Flat (4) -3.25 (0.53) -3.26 (0.53) -3.25 (0.53)   
Log Cost            

σ1 0.81 (0.81) 3.07 (1.06) 2.65 (0.85)   
σ2 2.91 (0.94) 0.24 (1.20) 1.51 (0.69)     
(σ1

2+σ2
2)1/2 3.02   3.08   3.05     

Simulated Log-likelihood -472.73   -472.66   -473.02       



 25

Table 2. Empirical Unidentification with a Random Coefficient on a Nest Dummy 

  True 
1 

Random 
10 

Random 
35 

Random 
100  

Random 
1000 

Random 
1 

Halton 
10  

Halton 
35 

Halton 
100  

Halton 
  value          

σ 2.0 0.065 0.763 4.556 
no 

convergence
no 

convergence 0.168 21.456 
no 

convergence
no 

convergence
   (0.254) (0.848) (9.050)   (0.279) (101.142)   
            
Simulated Log-
likelihood  -80.44 -80.26 -78.58 - - -80.32 -78.73 

 
- - 

Number of 
observations  50 50 50 50 50 50 50 

 
50 50 

Notes: Standard error in parentheses. Uses non-robust standard errors. 



 26

Table 3. Empirical Identification with a Random Coefficient on a Nest Dummy 

  True 
1  

Random 
10 

Random 
100 

Random 
1000 

Random 
1  1000 
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Table 4.  Empirical Unidentification with Random Coefficients on Continuous Variables 

          

  
True 
value 

1 
Random

5 
Random

500 
Random 

σ1 1.0 0.002 0.698 5972.361 
    (0.017) (0.222) (67105.679) 
σ2 1.0 0.042 -0.305 2147.465 
    (0.066) (0.212) (24133.121) 
Simulated Log-
likelihood  -109.6 -94.1 -85.5 
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Table 5. Empirical Identification with Random Coefficients on Continuous Variables 
            

  
True 
value 

1 
Random

25 
Random 

1000 
Random 

2000 
Random 

σ1 1.0 0.000 -0.496 0.909 0.920 
    (0.002) (0.020) (0.123) (0.127) 
σ2 1.0 -0.001 0.123 0.866 0.877 
    (0.007) (0.059) (0.178) (0.181) 
Simulated Log-
likelihood  -10986 -10083 -9917 -9911 
Number of 
observations  10000 10000 10000 10000 

Notes: Standard error in parentheses. Uses robust standard errors. 
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Table 6. Retail Stores 

Note: Uses non-robust standard errors. 
 

 
    1 Draw 100 Draws 200 Draws 1000 Draws 
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Table 7. Synthetic Results 
True

Parameter value estimate std. error etimate std. error etimate std. error
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Figure 1. Unidentified Model with Random Coefficient on a Nest Dummy (50 observations, 
Random Draws) 
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Figure 2. Unidentified Model with Random Coefficient on a Nest Dummy (50 observations, 
Halton Draws) 
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Figure 3. Identified Model with Random Coefficient on a Nest Dummy (10000 observations, 
Random Draws) 
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Figure 4. Identified Model with Random Coefficient on a Nest Dummy (10000 observations, 
Halton Draws) 
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Figure 5. Unidentified Model with Random Coefficient on Normally Distributed Variable (100 
observations, Random Draws) 
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Figure 6. Identified Model with Random Coefficient on Normally Distributed Variable (10000 
observations, Random Draws) 
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Note: This figure plots the maximum of the Simulated Log-Likelihood over Sigma2 for a given value of Sigma1. 
 
 
 


